Departamento de Ingeniería Eléctrica

Research lines & main technology transfer projects

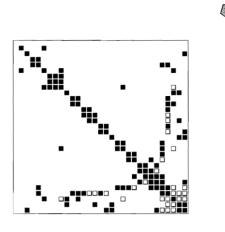
University of Sevilla

- Julio II Pope's edict in 1505
- Arts, Logic, Philosophy, Theology, Laws and Medicine (in 1508)
- Second largest in Spain:
 - Nearly 70,000 students
 - Over 4000 teaching staff
 - 32 Faculties/Colleges
 - 67 Bachelor degrees
 - 79 Master degrees
 - 31 PhD degrees (new RD)

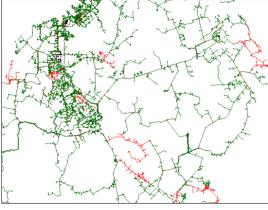
School of Engineering

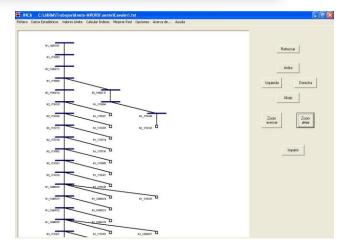
- Created in 1967 under OECD umbrella
- Currently all branches of engineering:
 - Nearly 6000 students
 - Over 400 teaching staff
- AICIA:
 - Non-profit foundation created in 1982
 - Third-party of US for management of research & technology transfer projects

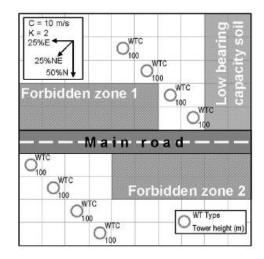
- Principal investigator: Antonio Gómez-Expósito
- Steadily growing since the mid 80's
- Currently **30 members** (20 Ph.D., 4 full professors)
- Uninterrupted Postgraduate Program in Power Eng.
- Ph.D. program in cooperation with UPC-UPV/EHU-UMA
- Strong link with utilities and industry:
 - Endesa Industrial Chair
 - Over 80 R&D&T projects
- A spin-off launched in 2012: INGELECTUS Innovative Electrical Solutions



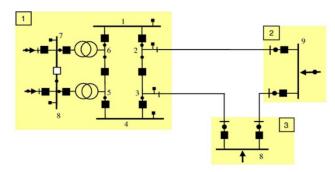
- Modeling & computational tools
- Transmission & distribution planning (with uncertainty)
- Operation and control of T&D smart grids
- Integration of renewable sources
- Electricity markets, ancillary services & regulatory issues
- Monitoring & protection of smart grids
- Energy efficiency and power quality


- Sparsity:
 - Large-scale systems of equations
 - Optimal node ordering
- Load flow:
 - Improved efficient formulations
 - Focus on distribution networks
- Digital signal processing:
 - Short-time discrete Fourier
 - Wavelet transform
- Modeling of renewable sources
 - PV, thermosolar
 - Wind, wave

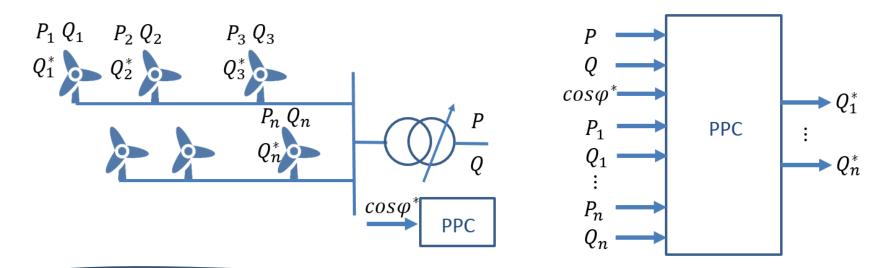




- Reliability analysis and improvement
- Right-of-way capacity upgrading:
 - HTLS
 - AC-DC conversion
 - Low reactance configurations
- Optimal configuration of feeders with embedded DG
- Wind farm planning:
 - Optimal plant layout
 - Portfolio assessment

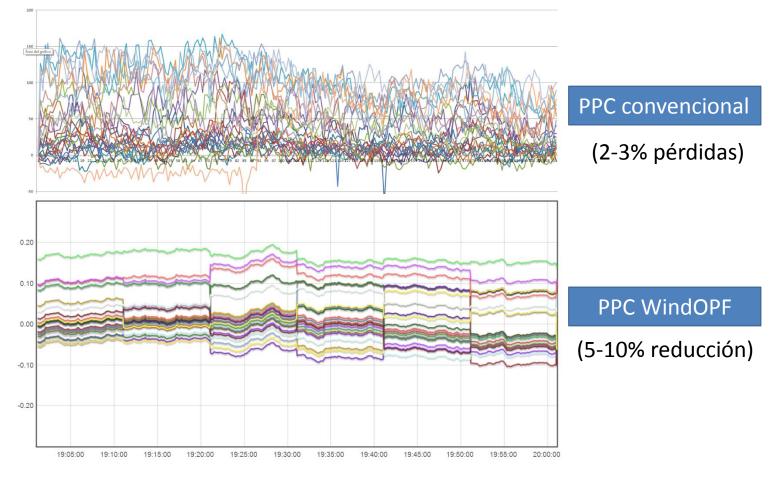


- State estimation:
 - Solution breakthroughs (PEGASE)
 - Multi-area applications (PMUs)
 - Substations and distribution feeders
- OPF tools in restructured systems
 - SETRE Expert System (Spain, Algeria)
 - PEGASE (large-scale SC-OPF)
 - Operation of wind & PV plants
- Security assessment:
 - Contingency analysis
 - Feeder congestion removal
- Service restoration



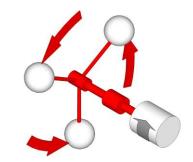
WINDOPF project

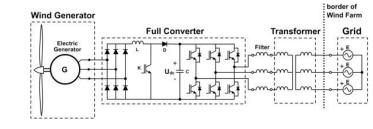
- Potencia reactiva en los parques eólicos y fotovoltaicos:
 - Factor de potencia constante (España)
 - Tensión de referencia (Puerto Rico)
- Necesidad de un controlador de planta (PPC)

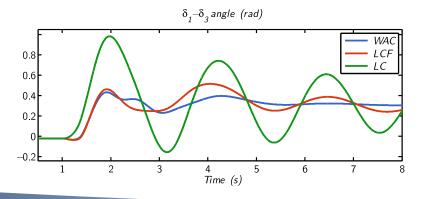


WINDOPF project

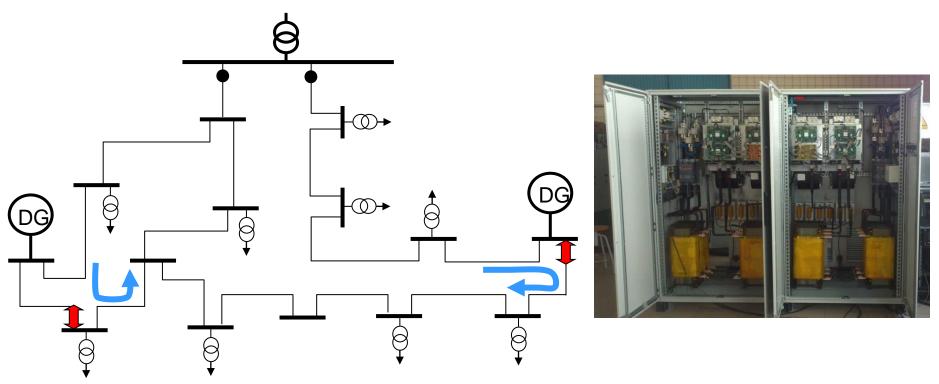
Característica	PPC convencional	PPC WindOPF
Cumplimiento requerimiento punto frontera	\checkmark	\checkmark
Variables de control	Q generadores	<i>Q</i> generadores Toma trafo cabecera
Criterio de asignación	Proporcional	OPF
Minimización de pérdidas internas	×	\checkmark
Cumplimiento límites operacionales internos	×	\checkmark



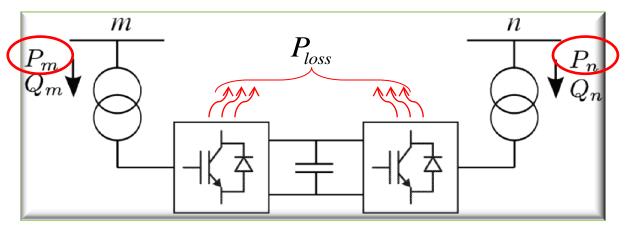

WINDOPF project



- Wind turbine control:
 - Mechanical stress mitigation
 - Contribution to voltage stability, frequency regulation and oscillation damping
- Control of renewables with storage
- Wide-area control (WAC) using PMUs
- Application of power electronics:
 - Shunt-series AC-DC links
 - Tap changers

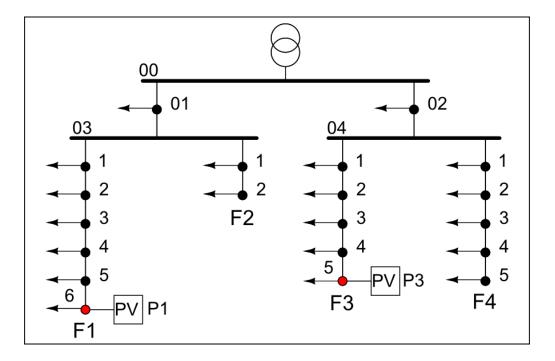


SMARTIE project

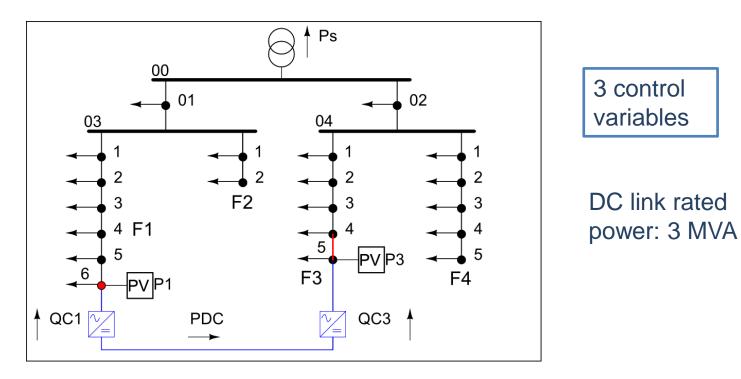

Smart links: Replace (normally open) mechanical switches by fully controllable electronic switches

SMARTIE project

Back-to-back PWM Voltage Source Converters (VSC)

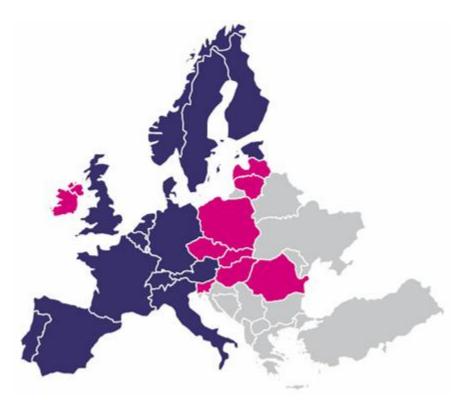


- Three degrees of freedom: P, Qm, Qn
- Short-circuit levels not affected (fast response)
- Same frequency, small voltage drop


Case study: integration of PV in rural feeders

Base case	P1 + P3 = 8.2 MW

Case study: integration of PV in rural feeders


Base case	P1 + P3 = 8.2 MW	
Smart link added	P1 + P3 = 9.8 MW	+ 19.9 %

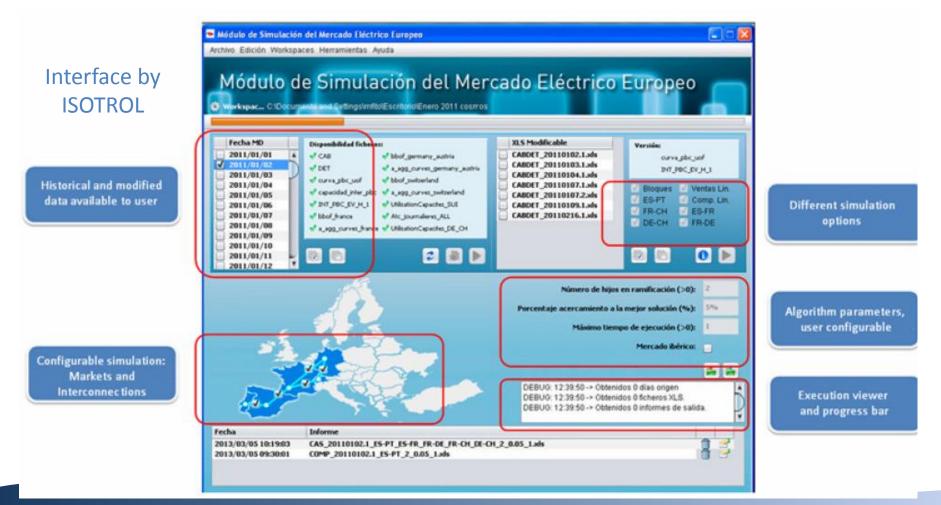
- Wholesale market modeling and simulation
- Local markets (new business models):
 - Prosumer aggregators
 - Microgrids
 - Optimal dispatch with storage (EVs)
- Forecasting tools for optimal bidding
 - Demand
 - Electricity prices
 - Intermittent resources
- Demand-side management & curtailment:
 - Residential
 - Industrial
- Remuneration of distribution activity

The newly interconnected European electricity market is based on the creation of a single-priced region, implicit auctions for interconnections rights and the utilization of a unique algorithm to be implemented in the integrated market.

New European matching algorithm (Euphemia) differs significantly from the algorithm currently implemented in MIBEL market:

- Performs a simultaneous matching of bids of purchase and sale for a period of 24 hours.
- Uses the **maximization of social welfare** as the objective function.
- Employs a combinatorial optimization system.
- Enables the use of a hybrid representation of interconnections through the simultaneous use of ATC (with ramping) and network flow models.
- Allows the use of different types of bids to buy/sell energy, in linear or step mode and in several kinds of blocks.
- Allows the inclusion of different types of constraints, e.g. minimum income condition, ramps and linked blocks.

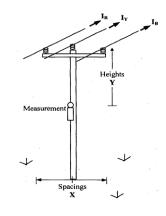
Countries: 8

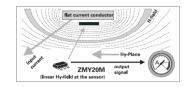

Bidding Types	Consumer	Producer
Linear	1738	2065
Stepwise	132	669
Fixed Block	64	60
Variable Block	25	30

Nº Variables: 150.000 ÷ 300.000

Execution times:

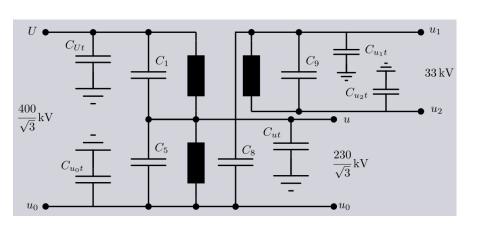
simple matching: 3-5 secs. complex matching: 5m

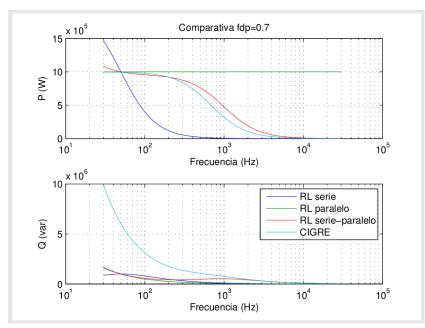




Monitoring & protection of smart grids

- Electromagnetic transients:
 - FDNE
 - Inrush mitigation
- Insulation coordination
- Fault detection & isolation
- Grounding arrangements
- Wireless sensors




Tools for EMTP simulation of large-scale systems

• Accurate component modeling

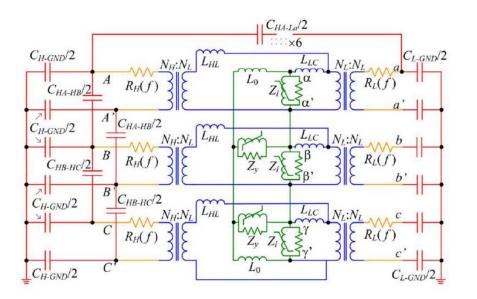
Autotransformer model

Frequency-domain load models

• Tools for EMTP simulation of large-scale systems

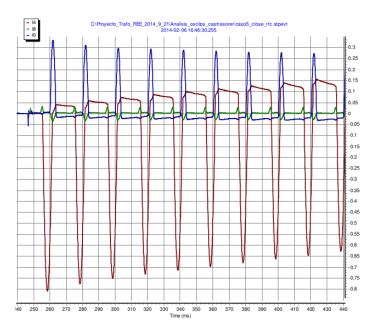
- Accurate component modeling
- Automatic creation of frequency-domain network equivalents (FDNE)

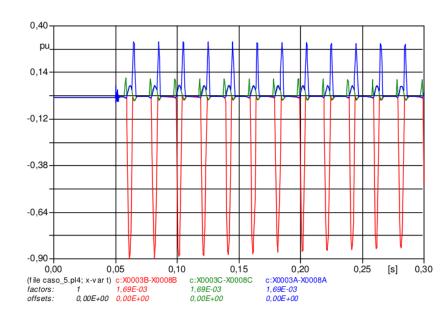
Case study: Spain-France HVDC interconnection (1400 MW)


nriquecimiento de Ar	chivos racau	
Alfonso Bachiller S José Antonio Rosendo Antonio Gómez Exp	Macías (Universidad de ósito	Eléctrica Sevilla)
*	delo Multifrecuencia de Rec RED LÉCTRICA E ESPAÑA	v 1.7 Febrero 2014
	Input File	Browse
Output Pscad File		
Output File		Browse
.raw case File		
	raw File	Browse
Modelad	lo de las cargas	
 RL serie RL paralelo 	 Potencia constante Intensidad constante 	 Enriquecer cables Enriquecer transformadores
	Impedancia constante	Convertir

• Analysis and mitigation of switching transients

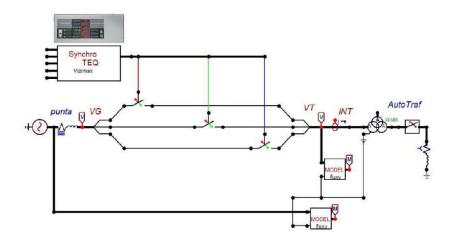
• Inrush studies: detailed models


Three-column transformer model



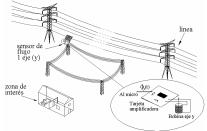
• Analysis and mitigation of switching transients

• Inrush studies: detailed models


Real (left) and simulated (right) current waveforms

• Analysis and mitigation of switching transients

- Inrush studies: detailed models
- Mitigation strategies
- Controlled switching: smart relays
 - Residual flux, CB dynamics



Energy efficiency and power quality

- Waveform monitoring:
 - Public utilities
 - Private customers
- Harmonic mitigation:
 - Passive filters
 - Active filters
 - Hybrid filters
- Mitigation of electromagnetic fields
- Energy efficiency advising for industrial systems and public buildings

Last five years in numbers

- 60 papers indexed in JCR
- 74 international conference papers
- 10 research and educational books
- 8 PhD Thesis
- 35 MSc Thesis
- 4 patents
- 70 R&D&T Projects

