Linear state estimation of balanced and unbalanced systems

Ali Abur

Department of Electrical and Computer Engineering
Northeastern University, Boston
abur@ece.neu.edu

CÁTEDRA ENDESA DE LA UNIVERSIDAD DE SEVILLA
Escuela Técnica Superior de Ingeniería de Sevilla

28 de mayo de 2015
Greetings from Northeastern University

• Location: Boston, Massachusetts, USA
• Web: www.northeastern.edu
• Student population
 – Undergraduate: ~16,000
 – Graduate: ~5000
 – International: 15% (125 countries)
• Colleges and schools
 – College of Arts, Media, and Design
 – College of Business Administration
 – College of Computer and Information Science
 – College of Engineering
 – Bouvé College of Health Sciences
 – College of Professional Studies
 – College of Science
 – College of Social Sciences and Humanities
 – School of Law
Outline

Synchronized Phasor Measurements
Phasor-Only Linear State Estimation
 WLS formulation
 LAV formulation
 Hybrid (WLS/LAV and SCADA/PMU) estimation
Application to 3-phase unbalanced grids
Closing remarks
Phasor measurement units (PMU)

“Synchronized Phasor Measurements and Their Applications” by A.G. Phadke and J.S. Thorp

Invented by Professors Phadke and Thorp in 1988.

They calculate the real-time phasor measurements synchronized to an absolute time reference provided by the Global Positioning System.

PMUs facilitate direct measurement of phase angle differences between remote bus voltages in a power grid.
Phasor Measurement Units (PMU) Phasor Data Concentrators (PDC) [*]

[+] IEEE PSRC Working Group C37 Report

(c) Copyright 2015 -- Ali Abur
Reference phasor

(c) Copyright 2015 -- Ali Abur
Measurements provided by PMUs

PMU

V phasor

I phasors

ALL 3-PHASES ARE TYPICALLY MEASURED
BUT
ONLY POSITIVE SEQUENCE COMPONENTS ARE REPORTED

\[
\begin{bmatrix}
V_A \\
V_B \\
V_C
\end{bmatrix}
= [T]
\begin{bmatrix}
V_0 \\
V_+ \\
V_-
\end{bmatrix}
\Rightarrow V_+ = \frac{1}{3}[V_A + \alpha V_B + \alpha^2 V_C]
\]

\[\alpha = e^{\frac{j2\pi}{3}}\]
Measurement equations

SCADA Measurements

\[Z = h(X) + \nu \quad \text{Non-linear Model} \]

\[H_x : \nabla h(X) \]

Phasor Measurements

\[Z = H \cdot X + \nu \quad \text{Linear Model} \]

\[H : \text{Function of network parameters only} \]

Phasor-only WLS state estimation

\[Z = H \cdot X + \nu \quad \text{Linear Model} \]

WLS state estimation problem:

Minimize \[\sum_{i}^{m} \frac{r_{i}^{2}}{\sigma_{i}^{2}} \]

Subject to \[r = Z - H \cdot \hat{X} \quad \text{residual} \]

\[\hat{X} = G^{-1}H^{T}R^{-1}Z \quad \text{Direct solution} \]

\[G = H^{T}R^{-1}H; \quad R = E\{\nu \cdot \nu^{T}\} = \text{cov}(\nu) \]

\[\sigma_{i}^{2} : R(i,i) \quad \text{error variance} \]

(c) Copyright 2015 -- Ali Abur
Phasor-only WLS state estimation

Consider a fully measured system:

\[
Z^m = \begin{bmatrix} V^m \\ I^m \end{bmatrix} \Rightarrow Bus \ voltages
\]

\[
= \begin{bmatrix} U \\ Y_b \cdot A \end{bmatrix} \cdot [V] + \nu
\]

\(U\) : identity matrix
\(Y_b\) : branch admittance matrix
\(A\) : branch - bus incidence matrix

Note: Shunt branches are neglected initially, they will be introduced later.
Phasor-only WLS state estimation

Let

\[
\begin{bmatrix}
V^m \\
I^m
\end{bmatrix}
= \begin{bmatrix}
e^m + jf^m \\
c^m + jd^m
\end{bmatrix}
\]

\[
= U \cdot \begin{bmatrix}
(g + jb) \cdot A
\end{bmatrix} \cdot \begin{bmatrix}
e + jf
\end{bmatrix} + \nu
\]

\[
= [H_F] \cdot \begin{bmatrix}
e + jf
\end{bmatrix} + \nu
\]

(c) Copyright 2015 -- Ali Abur
Phasor-only WLS state estimation:
Complex to real transformation

\[
\begin{bmatrix}
e^m \\ f^m \\ c^m \\ d^m
\end{bmatrix} = \begin{bmatrix}
U & -bA \\
gA & gA
\end{bmatrix} \cdot \begin{bmatrix}
e \\ f
\end{bmatrix} + \nu
\]

\[
[Z] = [H] \cdot \begin{bmatrix}
e \\ f
\end{bmatrix} + \nu
\]
Phasor-only WLS state estimation:

Exact cancellations in off-diagonals of \([G]\)

R is assumed to be identity matrix without loss of generality

\[
G = H^T \cdot H = \begin{bmatrix}
 U & & & \\
 gA & -bA & & \\
 bA & gA & & \\
 & & & \\
\end{bmatrix}^T \begin{bmatrix}
 U & & \\
 gA & -bA & \\
 bA & gA & \\
 & & & \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
 U + A^T(g^Tg + b^Tb)A & 0 \\
 0 & U + A^T(b^Tb + g^Tg)A \\
\end{bmatrix}
\]

\([G]\) matrix:
- Is block – diagonal
- Has identical diagonal blocks
- Is constant, independent of the state
Phasor-only WLS state estimation:

Correction for shunt terms

\[
[Z] = (H + H_{sh}) \cdot X + \nu = H \cdot X + u
\]

\[
u = H_{sh} \cdot X + \nu
\]

\[
E\{u\} = H_{sh} \cdot E\{X\}
\]

\[
E\{X\} = \hat{X} = G^{-1} H^T R^{-1} Z
\]

\[
X^{corr} = G^{-1} H^T R^{-1} (Z - H_{sh} \cdot \hat{X})
\]

\[
= \hat{X} - G^{-1} H^T R^{-1} H_{sh} \cdot \hat{X}
\]

Very sparse

(c) Copyright 2015 -- Ali Abur
Test Systems Used

<table>
<thead>
<tr>
<th>System Label</th>
<th>Number of Buses</th>
<th>Number of Branches</th>
<th>Number of Phasor Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>159</td>
<td>198</td>
<td>222</td>
</tr>
<tr>
<td>B</td>
<td>265</td>
<td>340</td>
<td>361</td>
</tr>
<tr>
<td>C</td>
<td>3625</td>
<td>4836</td>
<td>4982</td>
</tr>
</tbody>
</table>

Cases simulated:

- Case-1: No bad measurement.
- Case-2: Single bad measurement.
- Case-3: Five bad measurements.
Fast Decoupled WLS Implementation Results

Average MSE Values (for 100 Simulations)

<table>
<thead>
<tr>
<th>System</th>
<th>Case</th>
<th>WLS</th>
<th>Decoupled WLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0.59</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.59</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0.61</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.61</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.62</td>
<td>0.63</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0.59</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.58</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.58</td>
<td>0.59</td>
</tr>
</tbody>
</table>

(c) Copyright 2015 -- Ali Abur
Fast Decoupled WLS Implementation Results

Mean CPU Times of 100 Simulations

<table>
<thead>
<tr>
<th>System</th>
<th>Case</th>
<th>CPU Times (ms)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WLS</td>
<td>Decoupled WLS</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>5</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.7</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9.3</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>7.5</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.7</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14.8</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>137.4</td>
<td>75.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>169.5</td>
<td>95.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>284.7</td>
<td>165.6</td>
<td></td>
</tr>
</tbody>
</table>
L₁ (LAV) Estimator

Minimize \(\sum_{i=1}^{m} c^T \cdot |r| \)

Subject to \(Z = H \cdot \hat{X} + r \)
\(c^T = [1,1,\ldots,1] \)

Robust but with known deficiency:
Vulnerable to leverage measurements
Leverage points in measurement model

- Flow measurements on the lines with impedances, which are very different from the rest of the lines.
- Using a very large weight for a specific measurement.

\[H \ x + e = z \]

\[
R^{-1}H = \begin{bmatrix}
 x & x & x \\
 Y & Y & Y \\
 x & x & x
\end{bmatrix}
\]

Scaling both the measured value and the measurement jacobian row will eliminate leveraging effect of the measurement.

Leave zero injections since they are error free by design. Incorporate equality constraints in the formulation.

(c) Copyright 2015 -- Ali Abur
Properties of L_1 estimator

- Efficient Linear Programming (LP) code exists to solve it for large scale systems.
- Use of simple scaling eliminates leverage points. This is possible due to the type of phasor measurements (either voltages or branch currents).
- L_1 estimator automatically rejects bad data given sufficient local redundancy, hence bad data processing is built-in.
Bad data processing

WLS: Post estimation bad data processing / re-estimation

\[
\Omega = R - HG^{-1}H^T
\]

Normalized Residuals Test (NRT):

\[
G = H^T R^{-1}H
\]

\[
r_i^N = \frac{|r_i|}{\sqrt{\Omega_{ii}}}
\]

\[
z_i^{new} = z_i^{bad} - \frac{R_{ii}}{\Omega_{ii}} r_i^{bad}
\]

NRT is repeated as many times as the number of bad data.

L_1: Linear Programming Solution

LP problem is solved once. Choice of initial basis impacts solution time/iterations.
Small system example

IEEE 30-bus system

Line 1-2 parameter is changed to transform I_{1-2} into a leverage measurement

Case 1: Base case true solution

Case 2: Bad leverage measurement without scaling

Case 3: Same as Case 2, but using scaling

(c) Copyright 2015 -- Ali Abur
Small system example

Case-1

<table>
<thead>
<tr>
<th></th>
<th>V (pu)</th>
<th>θ (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5.2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-3.74</td>
</tr>
<tr>
<td>3</td>
<td>0.9952</td>
<td>0.13</td>
</tr>
<tr>
<td>4</td>
<td>0.9992</td>
<td>-4.81</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-9.02</td>
</tr>
<tr>
<td>6</td>
<td>0.9851</td>
<td>-7.41</td>
</tr>
<tr>
<td>7</td>
<td>0.9869</td>
<td>-8.88</td>
</tr>
</tbody>
</table>

Case-2

<table>
<thead>
<tr>
<th></th>
<th>V (pu)</th>
<th>θ (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0118</td>
<td>-3.5462</td>
</tr>
<tr>
<td>2</td>
<td>0.9999</td>
<td>-3.74</td>
</tr>
<tr>
<td>3</td>
<td>1.004</td>
<td>-3.8964</td>
</tr>
<tr>
<td>4</td>
<td>0.9992</td>
<td>-4.81</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-9.02</td>
</tr>
<tr>
<td>6</td>
<td>0.9851</td>
<td>-7.41</td>
</tr>
<tr>
<td>7</td>
<td>0.9869</td>
<td>-8.88</td>
</tr>
</tbody>
</table>

Case-3

<table>
<thead>
<tr>
<th></th>
<th>V (pu)</th>
<th>θ (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.9992</td>
<td>-3.74</td>
</tr>
<tr>
<td>3</td>
<td>0.9952</td>
<td>0.13</td>
</tr>
<tr>
<td>4</td>
<td>0.9992</td>
<td>-4.81</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-9.02</td>
</tr>
<tr>
<td>6</td>
<td>0.9851</td>
<td>-7.41</td>
</tr>
<tr>
<td>7</td>
<td>0.9869</td>
<td>-8.88</td>
</tr>
</tbody>
</table>
Simulation Results

3625 bus, 4836 branch utility system

<table>
<thead>
<tr>
<th>Method</th>
<th>CPU Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAV with built-in BD removal</td>
<td></td>
</tr>
<tr>
<td>No Bad Data</td>
<td>3.33</td>
</tr>
<tr>
<td>Single Bad Data</td>
<td>3.36</td>
</tr>
<tr>
<td>Five Bad Data</td>
<td>3.57</td>
</tr>
<tr>
<td>WLS using post-SE BD detection test</td>
<td></td>
</tr>
<tr>
<td>No Bad Data</td>
<td>2.32</td>
</tr>
<tr>
<td>Single Bad Data</td>
<td>9.38</td>
</tr>
<tr>
<td>Five Bad Data</td>
<td>50.2</td>
</tr>
</tbody>
</table>

- Bad data handling of LAV solver remains fairly insensitive to the number of bad data.
- Bad data handling of WLS solver will be proportionally slower with increasing number of bad data in the measurement set.

(c) Copyright 2015 -- Ali Abur
Remarks on CPU Results

• WLS SE solution is faster when there are no bad data.
• Under bad data LAV SE performs comparable or better than WLS SE. Advantages become more pronounced with increasing bad data.
• WLS needs some form of post-SE bad data processor (e.g. largest normalized residual test) to detect and remove bad data.
SCADA Based Implementation

Measurement set:
- Power injection measurements
- Power flow measurements
- Voltage magnitude measurements

Weighted Least Squares (WLS) Estimator
- Well-developed and widely-known
- Requires bad-data analysis (non-robust)
 - Normalized residuals test
 - Re-weighting

Least Absolute Value (LAV) Estimator
- Linear programming based, computationally inefficient
- Does not require bad-data analysis
- Deficiency in the presence of leverage measurements

(c) Copyright 2015 -- Ali Abur
PMU Based Implementation

Phasor Measurement Units (PMUs): Linearly related states and measurements.

WLS:
- Linear solution
- Requires bad-data analysis
 - Normalized residuals test
 - Re-weighting (not applicable)
- No deficiency in the presence of leverage measurements, with scaling.
- Exact cancellations in [G]

LAV (robust):
- Linear programming (single step), computationally efficient
- Does not require bad-data analysis
- No deficiency in the presence of leverage measurements, with scaling.

(c) Copyright 2015 -- Ali Abur
Main challenge:
Different refresh rates of SCADA and PMU measurements.
Phase angle measurement between critical locations on a power system provides operators with an early warning of potential system collapse.
SCADA and PMU Measurements

Using conventional SCADA-based SE → System collapses without warning
Using mixed measurement based SE → Tracks state and takes control action

(c) Copyright 2015 -- Ali Abur
Hybrid State Estimator

Must be able to process both PMU and SCADA measurements simultaneously.

At instances when both types of measurements are received it uses a WLS estimator.

Otherwise, it switches to a robust Least Absolute Value (LAV) based state estimator.
Flowchart of Hybrid SE

\[z^t_{\text{SCADA}} \]
\[z^t_{\text{PMU}} \]

WLS Estimator
\[x^t_{\text{estimated}} \]

Update SCADA measurements
\[z^{t+1}_{\text{SCADA}} \]

LAV Estimator
\[x^{t+1}_{\text{estimated}} \]

New SCADA measurement?
Yes
No

Next iteration

(c) Copyright 2015 -- Ali Abur
Implementation

Linearize measurement equations

\[\Delta z = z^k - h(x^k) \]
\[\Delta x = x^{k+1} - x^k \]
\[\Delta z = H\Delta x + e \]

Update SCADA measurements [*]

\[z_{SCADA}^{k+1} = h_{SCADA}(x^k) \]

Test Case: Voltage Collapse

- IEEE 57 bus system
 - 9 branch PMUs
 - 32 Power injection measurements
 - 32 Power flow measurements
- Voltage collapse at bus 22
 - No PMU at the bus.
57-Bus Example

Voltage Collapse
Comparison of the two estimators

\[\text{dev} = \sqrt{\sum_{i=1}^{n} (x_{i}^{\text{estimated}} - x_{i}^{\text{true}})^2} \]
Voltage at Bus 22 Tracked by the Two Estimators

![Graph showing voltage magnitude over time for True values, WLS based estimates, and LAV based estimates.]

<table>
<thead>
<tr>
<th>Method</th>
<th>Average Run Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLS-based</td>
<td>4.5 ms</td>
</tr>
<tr>
<td>LAV-based</td>
<td>9.7 ms</td>
</tr>
</tbody>
</table>

(c) Copyright 2015 -- Ali Abur
Simulation Results (No Bad Data)

140-bus, 233-branch NPCC system.
95 power injections and 205 power flows
SCADA/sec and PMU*30/sec; T=10 sec.

\[\text{MSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i^{\text{estimated}} - x_i^{\text{true}})^2} \]

(c) Copyright 2015 -- Ali Abur
Simulation Results (with Bad Data)

For the entire simulation:

\[P_{\text{inj}} -126 = 0 \]
\[P_{\text{flow}} -121-119 = 0 \]

Assume 30 PMUs are installed in the system.

Percentage Mean Squares Error

\[
MSEP = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(100 \times \left(\frac{x_i^{\text{estimated}} - x_i^{\text{true}}}{x_i^{\text{true}}} \right) \right)^2}
\]
3-phase Operation:
Motivation and Observations

• State estimators implicitly assume balanced operating conditions and use positive sequence network model and measurements. This assumption is sometimes questionable.

• Phasor measurements are linearly related to the states, thus can be decomposed into modal components.

• It will then be possible to utilize existing, well developed and tested software to run state estimation in each mode independently and in parallel.
Proposed approach: Modal decomposition revisited

• Decompose phasor measurements into their symmetrical components
• Estimate individual symmetrical components of states separately (in parallel if such hardware is available)
• Transform the estimates into phase domain to obtain estimated phase voltages and flows.
Modal decomposition of measurement equations

\[Z = HV + e \]
\[Z^T = [Z_v^T Z_i^T] \]

Phasor domain measurement representation
H: 3mx3n
V: 3nx1
Z: 30x1

\[V_S = TV_P \quad \& \quad I_S = TI_P \]

Modal domain vectors
T: 3x3
V_s and I_s: 3x1

\[T_Z = \begin{bmatrix} T & 0 & \cdots & 0 \\ 0 & T & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & T \end{bmatrix} \]

T: 3mx3m

\[T_Z Z = T_Z HV + T_Z e \]

(c) Copyright 2015 -- Ali Abur
Modal decomposition of measurement equations

\[V = T_v V_M \]

\[T_v = \begin{bmatrix}
T^{-1} & 0 & \cdots & 0 \\
0 & T^{-1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & T^{-1}
\end{bmatrix} \]

\[Z_M = H_M V_M + e_M \]

\[Z_M = T_Z Z \]

\[H_M = T_Z H T_V \]

\[e_M = T_Z e \]

Zero sequence

\[Z_0 = H_0 V_0 + e_0 \]

\[V_0 = G_0^{-1} H_0^T R_0^{-1} Z_0 \]

\[G_0 = H_0^T R_0^{-1} H_0 \]

Positive/ Negative sequence

\[Z_r = H_r V_r + e_r \]

\[V_r = G_r^{-1} H_r^T R_r^{-1} Z_r \]

\[G_r = H_r^T R_r^{-1} H_r \]

\[Z_0, Z_r : mx1 \]

\[V_0, V_r : nx1 \]

\[H_0, H_r : m xn \]

- Fully decoupled three relations
- Smaller size (Jacobian) matrices

(c) Copyright 2015 -- Ali Abur
Large scale 3-phase system example: 3625-buses and 4836-branches

<table>
<thead>
<tr>
<th>CPU (seconds)</th>
<th>No Bad Data</th>
<th>One Bad Datum</th>
<th>Five Bad Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LAV</td>
<td>WLS</td>
<td>LAV</td>
</tr>
<tr>
<td>Zero Seq.</td>
<td>3.52</td>
<td>2.32</td>
<td>3.65</td>
</tr>
<tr>
<td>Positive Seq.</td>
<td>3.61</td>
<td>2.62</td>
<td>3.63</td>
</tr>
<tr>
<td>Negative Seq.</td>
<td>3.21</td>
<td>2.22</td>
<td>3.45</td>
</tr>
</tbody>
</table>

(c) Copyright 2015 -- Ali Abur
No Reference Bus is Needed

- Eliminate the reference phase angle from the SE formulation.
- Bad data in SCADA as well as phasor measurements can be detected and identified with sufficiently redundant measurement sets.
Final Remarks

• SE performance have significant impact on all other application functions related to the transmission grid

• PMUs can improve SE performance in the following areas:
 – Computational speed and numerical robustness
 – 3-Phase state estimation
Thank You
Any Questions?

This work was supported primarily by the ERC Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program. Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.

(c) Copyright 2015 -- Ali Abur